当前位置:首页 > 教学文档 > 教案

二次根式教案

时间:2023-01-16 19:07:38
【推荐】二次根式教案3篇

【推荐】二次根式教案3篇

作为一名教师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。那么什么样的教案才是好的呢?以下是小编帮大家整理的二次根式教案3篇,欢迎阅读与收藏。

二次根式教案 篇1

一、复习引入

学生活动:请同学们完成下列各题:

1.计算

(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

二、探索新知

如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立.

整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.

例1.计算:

(1)(+)×(2)(4-3)÷2分析:刚才已经分析,二次根式仍然满足整式的运算规律,所以直接可用整式的运算规律.

解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.计算

(1)(+6)(3-)(2)(+)(-)

分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.

解:(1)(+6)(3-)

=3-()2+18-6=13-3(2)(+)(-)=()2-()2

=10-7=3

三、巩固练习

课本P20练习1、2.

……此处隐藏1663个字……

类似地,请每个同学再举一个例子,

请学生们思考为什么b的取值范围变小了?

与学生一起写清解题过程,提醒他们被开方式一定要开尽.

对比二次根式的乘法推导出除法的运算方法

增强学生的自信心,并从一开始就使他们参与到推导过程中来.

对学生进一步强化被开方数的取值范围,以及分母不能为零.

强化学生的解题格式一定要标准.

教学过程设计

问题与情境师生行为设计意图

活动二自我检测

活动三挑战逆向思维

把反过来,就得到

(≥0,b0)

利用它就可以进行二次根式的化简.

例2化简:

(1)

(2)(b≥0).

解:(1)(2)练习2化简:

(1)(2)活动四谈谈你的收获

1.商的算术平方根的性质(注意公式成立的条件).

2.会利用商的算术平方根的性质进行简单的二次根式的化简.

找四名学生上黑板板演,其余学生在练习本上计算,然后再找学生指出不足.

二次根式的乘法公式可以逆用,那除法公式可以逆用吗?

找学生口述解题过程,教师将过程写在黑板上.

请学生仿照例题自己解决这两道小题,组长检查本组的学习情况.

请学生自己谈收获,并总结本节课的主要内容.

为了更快地发现学生的错误之处,以便纠正.

此处进行简单处理是因为有二次根式的乘法公式的逆用作基础理解并不难.

让学困生在自己做题时有一个参照.

充分发挥组长的作用,尽可能在课堂上将问题解决.

《【推荐】二次根式教案3篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式